Sebutkan dan jelaskan cara menentukan kebenaran dari suatu pernyataan !

Sebutkan dan jelaskan cara menentukan kebenaran dari suatu pernyataan !

Jawaban:

Logika Matematika: Ingkaran, Konjungsi, Disjungsi, Implikasi, dan Biimplikasi

Penjelasan:

Ingkaran/negasi/penyangkalan (~)

Dari sebuah pernyataan, kita dapat membuat pernyataan baru berupa “ingkaran/negasi/penyangkalan” atas pernyataan tadi. Berikut adalah tabel kebenaran ingkaran:

ingkaran.png

*B = pernyataan bernilai benar

S = pernyataan bernilai salah

Artinya, jika suatu pertanyaan (p) benar, maka ingkaran (q) akan bernilai salah. Begitu pula sebaliknya. Berikut adalah contoh dalam matematika:

p: Besi memuai jika dipanaskan (pernyataan bernilai benar)

~p: Besi tidak memuai jika dipanaskan (pernyataan bernilai salah).

Contoh lain:

p: Semua unggas adalah burung.

~p: Ada unggas yang bukan burung.

Dalam kehidupan sehari-hari, kita seringkali menemui orang menggunakan pernyataan negasi atas pernyataan orang lain… yang berujung pada pertengkaran.

konjungsi

tabel kebenaran konjungsi

Dari tabel di atas, kita dapat melihat bahwa konjungsi hanya akan benar jika kedua pernyataan (p dan q) benar.

Contoh:

p: 3 adalah bilangan prima (pernyataan bernilai benar)

q: 3 adalah bilangan ganjil (pernyataan bernilai benar)

p^q: 3 adalah bilangan prima dan ganjil (pernyataan bernilai benar)

Disjungsi (V)

Disjungsi adalah pernyataan majemuk dengan kata hubung “atau”. Sehingga notasi “pVq” dibaca “p atau q”.

Tabel nilai kebenaran disjungsi:

tabel kebenaran disjungsi

Jika kita lihat pada tabel kebenaran, disjungsi hanya salah jika kedua pernyataan (p dan q) salah.

Contoh:

p: Paus adalah mamalia (pernyataan bernilai benar)

q: Paus adalah herbivora (pernyataan bernilai salah)

pVq: Paus adalah mamalia atau herbivora (pernyataan bernilai benar)

Implikasi (->)

Implikasi adalah pernyataan majemuk dengan kata hubung “jika… maka…” Sehingga notasi dari “p->q” dibaca “Jika p, maka q”. Adapun tabel nilai kebenaran dari implikasi:

BACA:  Perwujudan kepulauan nusantara sebagai satu kesatuan politik artinya

tabel kebenaran implikasi

Dari tabel terlihat bahwa implikasi hanya bernilai salah jika anteseden (p) benar, dan konsekuen (q) salah.

Contoh:

p: Andi belajar dengan aplikasi ruangguru. (pernyataan bernilai benar)

q: Andi dapat belajar di mana saja. (pernyataan bernilai benar)

p->q: Jika Andi belajar dengan aplikasi ruangguru, maka Andi dapat belajar di mana saja (pernyataan bernilai benar)

Biimplikasi (<->)

Biimplikasi adalah pernyataan majemuk dengan kata hubung “… jika dan hanya jika”. Sehingga, notasi dari “p<-> q” akan dibaca “p jika dan hanya jika q”.

Biimplikasi (<->)

Biimplikasi adalah pernyataan majemuk dengan kata hubung “… jika dan hanya jika”. Sehingga, notasi dari “p<-> q” akan dibaca “p jika dan hanya jika q”.

Tabel nilai kebenaran Biimplikasi:

tabel kebenaran biimplikasi

Dari tabel kebenaran tersebut, dapat kita amati bahwa biimplikasi akan bernilai benar jika sebab dan akibatnya (pernyataan p dan q) bernilai sama. Baik itu sama-sama benar, atau sama-sama salah

Contoh:

p: 30 x 2 = 60 (pernyataan bernilai benar)

q: 60 adalah bilangan ganjil (pernyataan bernilai salah)

p<->q: 30 x 2 = 60 jika dan hanya jika 60 adalah bilangan ganjil (pernyataan bernilai salah).